Math 10/11 Honors Challenging Sequences and Series Questions:

For each positive integer n, let S(n) denote the sum of the digits of n. For how
many values of n is n + S(n) + S(S(n)) = 20077
AMC 10

The increasing sequence 2, 3, 5, 6, 7, 10, 11 ........ consists of all positive integers that are neither the square
nor the cube of a positive integer. Find the 500%™ term.

Define the sequence Ay, A;, As, and so on by A = A; = 1, and
A, =2A, 1+ A,_5 for n > 2. Let x = 1/3. Calculate

Ao+ Aiz+ Asz® + Asz® + -+ Az + - - - .

Manipulate “infinite sums” freely, assume they behave algebraically like finite sums.
DR. Adler UBC

The sequence ag, ay, as, and so on is defined by ay = 2 and a,+; =
(2a, + 1)/(a, + 2) for n > 0. Find an explicit formula for a,, and prove that the
formula is correct.
Dr. Adler UBC

The increasing sequence: 1, 3, 4,9, 10, 12, 13, ..... consists of all those positve integers which are powers of 3
or sums of distince powers of 3. Find the 100" term of this sequence
AIME 198X

. Evaluate
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given Euler’s beautiful result that

Dr. Adler UBC




For the sake of notation let T'(n) = n + S(n) + S(S(n)). Obviously 7 < 2007. Then the maximum value of S(n) + S(S(n))is when
n = 1999, and the sum becomes 28 + 10 = 38, So the minimum bound is 1969. We do casework upon the tens digit:

Case 1: 196u = u = 9. Easy to directly disprove.
Case2:19Tu. S(n) =14+ 94+ 7+ u =17+ y,and S(S(n)) = 8 + uifu < 2and S(S(n)) = 2+ (u — 3) = u — 1otherwise.

Subcase a: T'(n) = 1970 + u + 17 + v + 8 + u = 1995 + 3u = 2007 = u = 4. This exceeds our bounds, so no solution here.
Subcase b: T'(n) = 1970 + v + 17 + uw +u — 1 = 1986 + Ju = 2007 = u = 7. First solution.

Case3:198u. S(n) = 18 + w,and S(S(n)) = 9+ uifu < land2 + (u — 2) = u otherwise.

Subcasea: T'(n) = 1980 + u + 18 + u + 9 4 u = 2007 4 3u = 2007 = u = 0. Second solution.
Subcase b: T'(n) = 1980 + u + 18 + u + u = 1998 + 3u = 2007 = u = 3. Third solution.

Case 4: 199u. But S(n) > 19,and n + S(n) clearly sum to > 2007

Case 5: 200u. So S(n) = 2 + uand 5(S(n)) = 2 + u (recall thatn < 2007), and
2000 +u + 24 u + 2 + u = 2004 + 3u = 2007 = u = 1. Fourth solution.
In total we have 4(D) solutions, which are 1977, 1980, 1983, and 2001.

Because there aren't that many perfect squares or cubes, let's look for the smallest perfect square greater than 500. This happens to be

23% = 529. Notice that there are 23 squares and 8 cubes less than or equal to 529, but 1 and 2° are both squares and cubes. Thus, there are
529 — 23 — 8 4+ 2 = 500 numbers in our sequence less than 529. Magically, we want the 500th term, so our answer is the smallest non-
square and non-cube less than 529, which is .

Solution. The calculation imitates the standard way to sum the infinite geometric series 1 + x +
2% +---. Recall that if we let that sum be G(z), then G(z) —2G(x) = 1 (almost everything cancels).
It follows that G(x) = 1/(1 — ). So let our sum be S(x). Multiply S(z) by 2z, and subtract from
the expression for S(z). Gathering like powers of = together, we obtain

S(Zl‘) = 2TS(T) = A(] + (A] ] 2A())I =+ (.42 - 2A1)T2 + (A:; — 2442)1'3 + (A4 = 2.43)1'4 erionesi g
If n > 2, then A, —2A,,_; = A, _2. Using this, we find that
S(x) — 2zS(x) =1 -z + Apz? + A1a® + Aoz +--- = 1 — £+ 2%5(z).

A little manipulation now gives S(z) = (1 — z)/(1 — 2z — 2?). When z = 1/3, this is equal to 3.
Comment. Things are somewhat more messy looking if from the beginning we work with 1/3 rather
than x. This increases the probability of error, and more importantly makes it more likely that a
nice structural pattern will be missed. Quite often in problems, even when specific numbers are
mentioned, it can be useful to replace them by letters. Any “algebra” will look much neater, and
one may get a general result. Working with specific numbers from the beginning may be necessary,
but it should be postponed if possible. In particular, premature use of the calculator can hide vital
structural information.

As instructed, we operated “formally” on the series, ignoring issues of convergence. It turns
out that our series converges if [#| < /2 — 1, which (no accident!) is one the roots of the equation
1— 2z —x? = 0. That root is roughly 0.4142, and 1/3 is safely smaller. A proof that there is
convergence at x = 1/3 is not hard. It is enough to show (say by induction) that A, < 0.35" if n is
large enough.

Solution. It is useful to experiment. We can without much trouble calculate the first few a;. We
find that @y, = 5/4, az = 14/13, ay = 41/40. We can see the beginnings of a possible pattern: the
numerator (at least so far) is 1 more than the denominator. The number aj also fits the pattern,
after we note that ay = 2/1.

Here is a somewhat less obvious element of the pattern. Note that the sum of the numerator
and denominator, for the first few terms, is 3, 9, 27, and 81. These are the powers of 3. So we may
want to guess that the numerator of a,, is (3"*! 4 1)/2 and the denominator is (3" — 1)/2. If we
divide, and for simplicity cancel the 2s, we have the conjecture that

3ntl 4

On = gn+l _1°

We can prove the result by Mathematical Induction, a very important idea. But we will (sort of)
sidestep doing a formal induction. Let b, = (3"*! + 1)/(3"*! — 1). We would like to show that
a, = b, for all n.

An easy calculation shows that by = 2. We will show that

2b, + 1
b, +2°

b1 =

Like most identities, this is quite easy to prove. Note that

3u+l |
2b, +1= Qm + 1.



Rewrite all of the terms in base 3. Since the numbers are sums of distinct powers of 3, in base 3 each number is a sequence of 1s and 0s (if
there is a 2, then it is no longer the sum of distinct powers of 3). Therefore, we can recast this into base 2 (binary) in order to determine the
100th number. 100 is equal to 64 + 32 + 4, so in binary form we get 1100100. However, we must change it back to base 10 for the answer,

which is 3% + 3° + 3% = 729 + 243 + 9 =981 ],



